Головна » Статті » Математика | [ Додати статтю ] |
Інтерполяція функції
Зміст Вступ 3 § 1. Постановка задачі 4 § 2. Подвійні різниці для функції двох змінних 7 § 3. Інтерполяційний многочлен у формі Ньютона для функції двох змінних 9 § 4. Інтерполяційний многочлен Лагранжа у випадку функції двох змінних 11 § 5. Двовимірні інтерполяційні ланцюгові дроби 12 § 6. Результати і висновки 19 Література 26 Додаток. Інструкція користувача та тексти програм 27 Вступ. Однією із задач, які розвязує сучасна обчислювальна математика, є проблема наближення функції однієї змінної та багатьох дійсних змінних іншими функціями більш простої, взагалі кажучи, будови, які легко обчислюються на електронно-обчислювальних машинах. Інша назва цієї задачі – апроксимування функції. Ця задача може постати, наприклад, у випадку, коли або функція задана своїми значеннями у вигляді таблиці результатів експерименту, або коли функція має складну аналітичну будову і знаходження її значення у деяких точках викликає обчислювальні труднощі. Так, зокрема, всі широко вживані на практиці функції sin(x), cos(x), exp(x), ln(x), ch(x), sh(x) та багато інших визначаються при обчисленнях на ЕОМ за допомогою функціональних рядів або ланцюгових дробів. В останні роки різко зріс інтерес до класичних методів апроксимації функцій. Це пов’язано з тим, що ці апроксимації знайшли різноманітне застосування в обчислювальних задачах теоретичної фізики та механіки. Взагалі потрібно відмітити, що останнім часом ми стаємо свідками позитивної тенденції, згідно якої сучасні математичні дослідження все більше і більше ініціюються найбільш передовими фізичними теоріями та прикладними обчислювальними задачами, серед яких і спроби обєднати слабкі, електромагнітні, сильні та гравітаційні взаємодії у фізиці і проблеми ефективної компресії аудіовізуальної інформації на підставі аналізу спектра сигналу в обчислювальній математиці та ще багато інших не менш цікавих задач. В даній кваліфікаційній роботі розглядаються два найбільш часто вживані підходи до інтерполяції функції двох змінних – двовимірні інтерполяційні многочлени і двовимірні інтерполяційні ланцюгові дроби, доводяться деякі корисні для практичного використання твердження. Також зроблено спробу дати деяку загальну оцінку ефективності використання вищезгаданих методів на підставі результатів обчислювальних експериментів. §1. Постановка задачі. Поставимо у відповідність двом дійсним змінним x і y прямокутну декартову систему координат X0Y. Розглянемо в площині цієї системи прямокутну область . І нехай у цій області визначена деяка функція двох змінних . Розіб’ємо область на прямокутники за допомогою сукупності прямих, паралельних 0X та 0Y . Для цього виберемо на проміжку множину точок , та на проміжку множину точок . Декартів добуток цих множин буде утворювати множину інтерполяційних вузлів. Відповідні прямі та розбивають область D на прямокутники. Нехай у вузлах задані значення функції . В цій же області D виберемо довільну точку . Процес обчислення в точках М, які не збігаються з вузловими, називається інтерполюванням. Обчислення значень в точках М, які лежать зовні області D, називають екстраполюванням. Перейдемо до обчислення невідомого значення . Проведемо через точку М дві прямі AB i PQ, паралельні координатним осям. Розглянемо точки перетину їх з прямими та , які проходять через інтерполяційні вузли. Для визначеності зупинимося на прямій AB, паралельній осі 0Х. Вона перетинається з прямими в точках , де у – ордината точок перетину. Тепер, зафіксувавши значення і, та використовуючи значення функції для , ми зможемо звичайними методами інтерполяції, розробленими для функції однієї змінної, обчислити значення . Проробивши це на всіх прямих , ми отримаємо значення функції в точках перетину AB та сукупності прямих. Інтерполюючи по цих точках, ми знайдемо і - значення функції у точці перетину пунктирних ліній. Аналогічно можна інтерполювати по значеннях функції на горизонтальних прямих і в такий спосіб знайти значення в точках перетину цих прямих з прямою PQ. Інтерполюючи по них, ми знову прийдемо до . Кінцевий результат не залежить від порядку, в якому виконується інтерполювання – чи спочатку горизонтальне, а потім вертикальне, чи навпаки – в обох випадках ми прийдемо приблизно до одного і того ж значення , оперуючи інтерполяційними формулами Ньютона, Стірлінга, Бесселя і їм подібними, обірваними на різницях одного порядку.До тепер задачу двовимірної інтерполяції ми розв’язували у вузькому смислі, інтерполюючи спочатку відносно однієї змінної, а потім відносно іншої для відшукання значення в точках, не співпадаючих з вузловими. В загальному випадку задача інтерполювання функції від двох змінних може бути сформульована так: в точках (що є перетинами сукупності паралелей координатним осям) замкненої області D задані значення неперервної функції і потрібно наблизити її за допомогою неперервної функції , яка у всіх даних точках приймає відповідно задані значення і зображує в інших точках D функцію точно або наближено. Співставимо поверхню з прямокутною системою координат. Щоб уявити собі геометричний зміст інтерполювання, достатньо побудувати поверхню , яка проходить через точки . Оскільки значення апроксимуючої функції в точках співпадають із значеннями , а в інших, взагалі кажучи, відмінні, точки ми і назвали вузловими точками. Геометричний зміст інтерполювання виражається в тому очевидному факті, що поверхня замінюється апроксимуючою поверхнею . Щоб оцінити точність інтерполяції, необхідно оцінити різницю аплікат цих поверхонь в точках , не співпадаючих з вузловими. Далі розглянемо інтерполяційні агрегати у вигляді многочленів (які будемо називати інтерполяційними многочленами для функції двох змінних) і двовимірних інтерполяційних ланцюгових дробів, оскільки такі представлення є найчастіше вживаними і краще вивченими. Але перед тим як приступити до побудови двовимірної інтерполяційної формули Ньютона, розглянемо спочатку подвійні різниці для функції двох змінних, які нам для цього знадобляться. §2. Подвійні різниці для функції двох змінних. Нехай задана функція і, крім того, задані такі значення аргументів і : і . Введемо поняття подвійних поділених різниць цієї функції. Поділені різниці функції ми можемо обчислити або по якій-небудь одній змінній, наприклад , або по обох змінних і . Якщо послідовні поділені різниці функції утворюються по , то символом будемо позначати n-ту частинну різницю функції по змінній ; якщо ж різниці утворюються по y, то через будемо позначати m-ту частинну різницю функції по змінній . Так, наприклад, перша поділена різниця функції по змінній х має вигляд (у вважається сталою): а різниця (х вважається сталою) являє собою першу поділену різницю функції по у. Зробимо важливе зауваження щодо символів , , і . Якщо розглянути, наприклад, символ , то можемо відмітити, що цим символом позначається значення функції в точці площини Х0У, а не перша поділена різниця функції , як це прийнято позначати у випадку одновимірної інтерполяції. Такий же зміст мають і інші символи. Для поділеної різниці (n+m)-го порядку відносно обох змінних х (для значень х, рівних ) та у (для значень у, рівних ) ми будемо використовувати позначення: Поділені різниці функції від двох змінних можуть бути отримані за допомогою формули для різниць функції від одної змінної. Власне ми можемо утворити певну суперпозицію двох таких формул: тоді Тут - значення в точці . Із цих формул видно, що поділені різниці функції по змінних х та у є симетричними функціями параметрів таким чином, що вони не змінюються при яких завгодно їх перестановках. Наприклад: . §3. Інтерполяційний многочлен у формі Ньютона для функції двох змінних. Згідно загальної інтерполяційної формули Ньютона для функції однієї змінної маємо: Але по тій самій формулі Ньютона ми можемо записати: Таким чином отримуємо інтерполяційну формулу для , яка залежить від поділених різниць: (1) де Але так як , то залишковий член може бути переписаний у вигляді (2) Таким чином для функції, яка залежить від двох змінних, формула Ньютона приймає вигляд (1), причому залишковий член може бути представлений у вигляді (2). За аналогією з одновимірним випадком, можна спростити залишковий член за допомогою значень похідних в деякій середній точці. Тоді можемо записати: , де знаходиться між найбільшим та найменшим з чисел і де знаходиться між найбільшим та найменшим з чисел . Символами та позначені частинні похідні. Тепер звернемо увагу ще на таке співвідношення: , де і знаходяться відповідно в тих самих межах, що згадані вище. Відмітимо, що невідомі числові значення і , які входять в дві перші формули, не рівні значенням і останньої формули. З цих формул отримуємо наступну формулу для оцінки похибки інтерполяції: §4. Інтерполяційний многочлен Лагранжа у випадку функції двох змінних. Розглянемо ще одну формулу інтерполювання без різниць – формулу Лагранжа. Вона пов’язана із значеннями функції в дискретних точках області D і часто є більш вигідною ніж попередньо розглянуті формули.Для отримання потрібної нам формули досить побудувати многочлен степеня (степеня відносно x та степеня відносно y), що приймає в точках ті самі значення що і задана функція . Якщо цей многочлен ми приймемо в якості інтерполяційного, то залишковий член відповідної інтерполяційної формули не буде нічим відрізнятися від залишкового члена попередньо виведеної формули Ньютона. Розглянемо многочлен степеня : де , . Так як то многочлен приймає значення у вузлах інтерполяції. Тому має місце формула Це і є інтерполяційна формула Лагранжа для функцій двох змінних. Вона є точною для многочленів, степінь яких по не перевищує , а по y - не перевищує . §5. Двовимірні інтерполяційні ланцюгові дроби. Розглянемо ще один спосіб двовимірного інтерполювання функцій – двовимірні інтерполяційні ланцюгові дроби. Нехай маємо дві послідовності дійсних чисел і . Ланцюговим дробом називається вираз вигляду , а n-м підхідним дробом ланцюгового дробу називається вираз вигляду Нехай маємо функцію задану своїми значеннями у вузлах сітки (див. § 1). Позначимо значення функції в інтерполяційних вузлах. За цими значеннями побудуємо двовимірний ланцюговий дріб такого вигляду: , (3) де , Твердження 1. Двовимірний інтерполяційний ланцюговий дріб (3) має коефіцієнтів, тобто кількість коефіцієнтів рівна кількості інтерполяційних вузлів . Доведення. Випадок, коли доведено в [2]. Припустимо тепер, що . Введемо позначення . Всі коефіцієнти дробу (3) містяться в конструкціях , причому кожна така конструкція містить 1+(n-p)+(m-p) коефіцієнтів. Тоді весь двовимірний ланцюговий дріб містить таку кількість коефіцієнтів: . Твердження доведено. Згідно з [2], значення двовимірного інтерполяційного ланцюгового дробу (3) можна знайти за допомогою оберненого рекурентного алгoритму, який у цьому випадку формулюється так: спочатку вибираємо початкове значення , а всі наступні значення знаходяться за рекурентним співвідношенням , де при , при . Тоді значення дробу (3) буде дорівнювати . Скориставшись оберненим рекурентним алгоритмом, отримаємо дріб (3) у вигляді відношення двох многочленів від двох незалежних змінних х та у : . Згідно з [3] має місце наступне твердження. Твердження 2. Двовимірний інтерполяційний ланцюговий дріб (3) є дробово-раціональною функцією двох незалежних змінних. Степені многочленів чисельника та знаменника по змінним х та у задовольняють нерівності: , , , , де . Доведення. Доведемо за аналогією з [1], де подібне твердження було доведено для випадку . Перепишемо підхідний дріб у такому вигляді: , де, як і раніше, . В [4] доведено, що є многочлен степені , а степені . Виходячи з цього маємо, що r(k) та задовольняють наступні рекурентні співвідношення: , (4) Припустимо, що . Вкладаючи співвідношення (4) одне в друге, отримуємо, що , так як . Оскільки , та при всіх s=1,2,…,k , то маємо , , отже . Розглянемо випадок, коли . Тоді, користуючись формулою попереднього випадку, з (4) маємо: отже . Тепер можемо об’єднати ці два випадки в одній формулі: . Ми довели твердження для степенів відносно х. Для степенів відносно у твердження доводиться повністю аналогічно. Визначимо коефіцієнти дробу (3) виходячи з умови інтерполяційності двовимірного ланцюгового дробу, тобто Для цього розглянемо квадратні матриці де та де Визначимо частинну обернену поділену різницю k-го порядку для функції двох змінних формулою де Твердження 3. Коефіцієнти двовимірного інтерполяційного ланцюгового дробу (3) задовольняють співвідношення (5) Доведення. Легко бачити, що формула (5) має місце для коефіцієнтів конструкції при довільному значенні і . Але коли один з індексів або рівен нулю (тобто розбиття по відповідній змінній має лише одну точку) а інший має довільне значення (назвемо такі розбиття лінійними), то і формула (5) має місце для всіх коефіцієнтів двовимірного інтерполяційного ланцюгового дробу. За допомогою методу математичної індукції доведемо, що формула (5) має місце для довільного розбиття, а не тільки для лінійного. Для цього спочатку покажемо, що навіть коли , ми маємо право на кожному кроці методу математичної індукції одночасно збільшувати розбиття по обох змінних на 1. Це так, оскільки довільне розбиття прямокутника, яке містить точок, може бути отримано з деякого лінійного розбиття додаванням однакової кількості точок n до розбиття по кожній координаті. А оскільки у випадку лінійного розбиття справедливість формули доведено, то ми маємо можливість одночасно збільшувати розбиття по обох змінних на кожному кроці на 1. Зробимо припущення, що (5) виконується і для інших значень , при і покажемо, що тоді (5) має місце і при . Для цього розглянемо інтерполяційний дріб виду: (6) Зробимо позначення . (7) Тоді (6) набуває вигляду .А оскільки , то Та як , то в кінцевому результаті маємо: . (8) З іншого боку (7) є двовимірним інтерполяційним ланцюговим дробом. Він має n поверхів і його коефіцієнти, за припущенням, визначаються згідно з формулами . Тут при . З останньої формули та з формули (8) випливає, що , а тоді і . Отже формула (5) має місце і при . Твердження доведено. §6. Результати і висновки. В цій роботі були розглянуті деякі цікаві властивості двовимірних інтерполяційних агрегатів. Зокрема були доведені твердження 1 – 3 (див. § 5), що дають відповіді на питання про кількість коефіцієнтів двовимірного інтерполяційного ланцюгового дробу, про степінь многочленів чисельника та знаменника цього дробу по змінним х та у а також вказують зручний спосіб обчислення його (дробу) коефіцієнтів. Для проведення обчислювальних експериментів були складені дві програми, які реалізують алгоритми двовимірної інтерполяції многочленами і дробами. Саме дві, оскільки при одних і тих же початкових умовах (функція, область і набір вузлів) побудова двовимірних інтерполяційних ланцюгових дробів є значно менш ресурсоємним алгоритмом, і тому для дробів відкривається можливість перевірити точність при таких наборах інтерполяційних вузлів із заданої області, які містять в декілька разів (а то і в десятки разів) більше точок, ніж для многочленів. Але для порівняння результатів ці програми були об’єднані в одну, текст якої подано в додатку. В ході обчислювальних експериментів було відмічено цікаві результати стосовно точності двовимірних інтерполяційних агрегатів, а саме : якщо при одновимірній інтерполяції із зростанням кількості точок розбиття проміжку похибка наближаючого агрегату прямує до нуля, то у випадку двох змінних можна спостерігати своєрідне “коливання” точності то в кращу, то в гіршу сторону. Найбільш яскраво це проявлялося при інтерполяції дробами і многочленами з вибором рівномірно розташованих на проміжках вузлах, але коли за вузли бралися корені многочлена Чебишева, то у многочленів збіжність значно покращувалася. Хоч такий вибір вузлів і не мав такого ж позитивного впливу на збіжність двовимірних інтерполяційних ланцюгових дробів. Нижче подано добірку результатів найбільш характерних обчислювальних експериментів. Вузли рівномірно розподілені по проміжках. Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 1 0.03359589352 0.17112619041 0.03359589352 0.17112619041 1 3 0.07979407980 0.55855855856 0.02794673681 0.12772351615 1 5 0.10256410257 0.71794871796 0.02794673681 0.12772351615 1 7 0.11327134404 0.79289940829 0.02794673681 0.12772351615 1 9 0.11948690916 0.83640836410 0.02794673681 0.12772351615 2 1 0.05513784461 0.38596491228 0.02794673681 0.12772351615 2 3 0.00149588631 0.01047120418 0.00286056709 0.01053077454 2 5 0.00367084735 0.02569593147 0.00286056709 0.01053077454 2 7 0.00496606522 0.03476245655 0.00286056709 0.01053077454 2 9 0.00580130529 0.04060913705 0.00286056709 0.01053077454 3 1 0.07979407980 0.55855855856 0.02794673681 0.12772351615 3 3 0.00010955319 0.00038036785 0.00039529924 0.00141131629 3 5 0.00057516716 0.00402617010 0.00029506299 0.00099681979 3 7 0.00121245188 0.00848716313 0.00029506299 0.00099681979 3 9 0.00174083342 0.01218583397 0.00029506299 0.00099681979 4 1 0.09367681499 0.65573770492 0.02794673681 0.12772351615 4 3 0.00024931439 0.00174520070 0.00029506299 0.00099681979 4 5 0.00000531018 0.00005369183 0.00002514144 0.00008248886 4 7 0.00002154654 0.00022136156 0.00002514144 0.00008248886 4 9 0.00003794714 0.00038368775 0.00002514144 0.00008248886 5 1 0.10256410257 0.71794871796 0.02794673681 0.12772351615 5 3 0.00057516716 0.00402617010 0.00029506299 0.00099681979 5 5 0.00000018143 0.00000086782 0.00000135931 0.00000910828 5 7 0.00000125315 0.00001130940 0.00000135931 0.00000910828 5 9 0.00000350675 0.00003164774 0.00000135931 0.00000910828 7 1 0.11327134404 0.79289940829 0.02794673681 0.12772351615 7 3 0.00121245188 0.00848716313 0.00029506299 0.00099681979 7 5 0.00000125315 0.00001130940 0.00000135931 0.00000910828 7 7 0.00000004615 0.00000032868 0.00000017397 0.00000055402 7 9 0.00000358960 0.00004242584 0.00000009208 0.00000028471 9 1 0.11948690916 0.83640836410 0.02794673681 0.12772351615 9 3 0.00174083342 0.01218583397 0.00029506299 0.00099681979 9 5 0.00000350675 0.00003164774 0.00000135931 0.00000910828 9 7 0.00000358960 0.00004242584 0.00000009208 0.00000028471 9 9 0.00000013991 0.00000085349 0.00000000610 0.00000001943 10 1 0.12170910661 0.85196374625 0.02794673681 0.12772351615 10 3 0.00196367204 0.01374570429 0.00029506299 0.00099681979 10 5 0.00024223355 0.00161644741 0.00000135931 0.00000910828 10 7 0.00000023596 0.00000152890 0.00000009208 0.00000028471 10 9 0.00000014410 0.00000103302 0.00000000358 0.00000001108 13 9 0.00000008845 0.00000106143 0.00000000032 0.0000000010813 13 0.00000072990 0.00000584425 0.00000000000 0.00000000005 13 17 0.00000080456 0.00000965474 0.00000000001 0.00000000016 16 11 0.00001599424 0.00015846739 0.00000000001 0.00000000006 16 16 0.00000001111 0.00000009383 0.00000000002 0.00000000028 16 21 0.00001498932 0.00017987182 0.00000000023 0.00000000161 19 13 0.00000056491 0.00000677887 0.00000000007 0.00000000022 19 19 0.00000528137 0.00006163225 0.00000000063 0.00000000209 19 25 0.00010534941 0.00104050837 0.00000000649 0.00000004557 22 15 0.00080950002 0.00903666350 0.00000000040 0.00000000284 22 22 0.00001861083 0.00021805476 0.00000002366 0.00000027061 22 29 0.00043326054 0.00434224569 0.00000107388 0.00000753194 25 17 0.00007599610 0.00091195321 0.00000000647 0.00000002149 25 25 0.00002255252 0.00017865824 0.00000040086 0.00000130487 25 33 0.00113924460 0.00829969851 0.00003818874 0.00026419263 Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 5 3.24426811700 0.25936524406 1.01605256300 0.22301819338 1 7 3.40559932930 0.27226297869 1.01605256300 0.22301819338 1 9 3.49484737320 0.27939797489 1.01605256300 0.22301819338 2 1 2.68626667810 0.45578318126 0.82009491140 0.10281705327 2 3 18.80114798500 1.56560230290 0.12197173822 0.02717768017 2 5 19.16101416800 1.59556894780 0.12197173822 0.02717768017 2 7 19.40883708000 1.61620556640 0.12197173822 0.02717768017 2 9 19.58095378700 1.63053800570 0.12197173822 0.02717768017 3 1 3.05789267090 0.51883756028 0.83628150464 0.12269426645 3 3 0.06996930280 0.01080601816 0.05658657866 0.01581389760 3 5 0.08203504677 0.00704388562 0.05658657866 0.01581389760 3 7 0.08972267137 0.00770397848 0.05658657866 0.01581389760 3 9 0.09405422454 0.00816904518 0.05658657866 0.01581389760 4 1 3.17211737340 0.53821824899 0.79886734924 0.11973821074 4 3 1.03475929090 0.31261102773 0.01438948907 0.00211114056 4 5 0.00355471962 0.00031632296 0.01431819926 0.00416439753 4 7 0.00918804694 0.00081761447 0.01431819926 0.00416439753 4 9 0.01359551656 0.00120982088 0.01431819926 0.00416439753 5 1 3.21977812530 0.54630492530 0.79279632362 0.12432859113 5 3 9.55544510300 3.18980551110 0.00170415189 0.00034142381 5 5 0.00314183322 0.00029351591 0.00139529149 0.00011178612 5 7 0.00431033543 0.00038839907 0.00139529149 0.00011178612 5 9 0.03366375800 0.00303340022 0.00139529149 0.00011178612 7 1 3.25691336130 0.55260572042 0.79279632362 0.12432859113 7 3 32.26359761300 7.93278873280 0.00034119813 0.00003441462 7 5 0.05321924076 0.00479552095 0.00014264755 0.00001670007 7 7 0.00023733490 0.00002177869 0.00014250720 0.00001291132 7 9 0.00023568401 0.00002712526 0.00014250654 0.00001291126 9 1 3.27024846460 0.55486830882 0.79279632362 0.12432859113 9 3 69.49991193600 15.55943330800 0.00033389464 0.00006804013 9 5 0.09294258014 0.00837494268 0.00000592170 0.00000056057 9 7 0.07396982892 0.02234701775 0.00000535759 0.00000123396 9 9 0.00000184251 0.00000046380 0.00000535753 0.00000134861 10 1 3.27377270390 0.55546627217 0.79279632362 0.12432859113 10 3 7.83307231320 1.71931817260 0.00033389464 0.00006804013 10 5 0.23649800997 0.02131054758 0.00000181598 0.00000039611 10 7 0.05229354757 0.00471210787 0.00000105605 0.00000025420 10 9 0.00002233167 0.00000201228 0.00000105624 0.00000009999 13 9 0.00024832765 0.00002237650 0.00000000026 0.00000000005 13 13 0.00000506715 0.00000147577 0.00000000032 0.00000000007 13 17 0.00014659991 0.00001320994 0.00000000064 0.00000000005 16 11 0.00048333000 0.00004355228 0.00000000070 0.00000000008 16 16 0.00000486751 0.00000038880 0.00000000124 0.00000000027 16 21 0.00005461043 0.00000492088 0.00000001956 0.00000000546 19 13 0.00015648101 0.00001682600 0.00000000279 0.00000000024 19 19 0.00028632679 0.00002521878 0.00000003170 0.00000000690 19 25 0.00130917979 0.00012314981 0.00000113749 0.00000009460 22 15 0.00152889619 0.00013776697 0.00000000694 0.00000000073 22 22 0.00010559520 0.00000999477 0.00000077299 0.00000017050 22 29 0.00103235420 0.00014429822 0.00004804310 0.00001075925 25 17 0.00055517971 0.00005002657 0.00000015058 0.00000001277 25 25 0.00015482755 0.00001228191 0.00000709665 0.00000065562 25 33 0.01349668484 0.00121616983 0.00113075808 0.00025518637 Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 5 4.26907939530 17.87816751000 0.77006080103 0.62183905290 1 7 4.83361520380 20.24234601700 0.77006080103 0.62183905290 1 9 5.12793542530 21.47490829500 0.77006080103 0.62183905290 2 1 1.42228330920 3.02254143800 1.01399535600 1.11410280990 2 3 0.15632162120 0.06415054670 0.21484530706 0.11871176369 2 5 0.28194142289 1.18072200580 0.21484530706 0.11871176369 2 7 0.51708390515 2.16545812750 0.21484530706 0.11871176369 2 9 0.75004781791 3.14107077610 0.21484530706 0.118711763693 1 2.30535476520 4.89918588090 1.01399535600 1.11410280990 3 3 0.09176472039 0.04238921600 0.06539640478 0.03128964751 3 5 0.17569820465 0.73579374923 0.06539640478 0.03128964751 3 7 0.73466187588 3.07663710700 0.06539640478 0.03128964751 3 9 79.09689132800 380.08798010000 0.06539640478 0.03128964751 4 1 2.90459563450 6.17265252920 1.01399535600 1.11410280990 4 3 0.09176472039 0.04238921600 0.03856145467 0.13238636329 4 5 0.28002626897 0.53705649920 0.02489108276 0.01040309434 4 7 0.04300141810 0.02400531237 0.01943566269 0.00861810557 4 9 0.01423096801 0.06304978102 0.01943566269 0.00861810557 5 1 3.33597622860 7.08939373870 1.01399535600 1.11410280990 5 3 0.09176472039 0.04238921600 0.03856145467 0.13238636329 5 5 0.69992377026 2.44564002530 0.02489108276 0.01040309434 5 7 1.53412034830 5.66756148450 0.00630070928 0.00239054954 5 9 0.13401553659 0.46931770746 0.00562971113 0.00230654644 6 1 3.66058269750 7.77922571300 1.01399535600 1.11410280990 6 3 0.09176472039 0.04238921600 0.03856145467 0.13238636329 6 5 0.14469725263 0.19832791267 0.02489108276 0.01040309434 6 7 0.00561698967 0.01217388750 0.00630070928 0.00239054954 6 9 0.01485810612 0.05546550562 0.00151752540 0.00062174466 7 1 3.91335269300 8.31639561500 1.01399535600 1.11410280990 7 3 0.09176472039 0.04238921600 0.03856145467 0.13238636329 7 5 0.01787994274 0.02273281525 0.02489108276 0.01040309434 7 7 0.00144214882 0.00181531650 0.00630070928 0.00239054954 7 9 0.12231038591 0.23529649957 0.00043682666 0.00016573622 9 1 4.28100120770 9.09769766840 1.01399535600 1.11410280990 9 3 0.09176472039 0.04238921600 0.03856145467 0.13238636329 9 5 1.89664778000 5.54429034000 0.02489108276 0.01040309434 9 7 0.00134461999 0.00177290056 0.00630070928 0.00239054954 9 9 0.00203735867 0.00111929047 0.00043682666 0.00016573622 10 1 4.41874857770 9.39042917360 1.01399535600 1.11410280990 10 3 0.09176472039 0.04238921600 0.03856145467 0.13238636329 10 5 1.48196879600 7.62835064880 0.02489108276 0.01040309434 10 7 0.00136355600 0.00292328948 0.00630070928 0.00239054954 10 9 0.00297598149 0.01545415169 0.00043682666 0.00016573622 13 9 0.00069543510 0.00275054882 0.00005829893 0.00003019337 13 13 0.00027392765 0.00070918044 0.00000452265 0.00000203712 13 17 0.11173897594 0.58025598916 0.00000008337 0.00000004241 16 11 0.00175199608 0.00731898081 0.00001232315 0.00000586816 16 16 0.09013917967 0.43555212042 0.00000012244 0.00000006073 16 21 0.00299018253 0.01370788411 0.00000000668 0.00000000270 19 13 0.00823256220 0.04275136299 0.00000452265 0.00000203712 19 19 0.33355834717 1.44521831510 0.00000004082 0.00000001678 19 25 13.56242073500 70.42910312200 0.00000009110 0.00000004108 22 15 2.50542799090 10.28782744700 0.00000052091 0.00000022557 22 22 1.08020022150 4.46276280420 0.00000006356 0.00000024856 22 29 18.68560017800 58.05870534000 0.00000129594 0.00000638087 25 17 2.02301405420 4.89599099940 0.00000007170 0.00000003322 25 25 5.83107864430 14.10475514500 0.00000217103 0.00001063924 25 33 4.81327780630 21.20846306500 0.00015961665 0.00006759015 Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 5 0.42019239733 0.44543897458 0.42019239733 0.44543897458 1 7 0.42019239733 0.44543897458 0.42019239733 0.44543897458 1 9 0.42466450399 0.46702486058 0.42019239733 0.44543897458 2 1 0.83600386078 5.92406330110 0.15385417502 0.16309825307 2 3 5.88628093420 9.40094430390 0.06063309017 0.14414041441 2 5 5.87684104480 9.38586791250 0.06063309017 0.14414041441 2 7 5.86902692020 9.37338802060 0.06063309017 0.14414041441 2 9 5.86379682380 9.36503506470 0.06063309017 0.14414041441 3 1 1.16216189560 8.23527373310 0.12204034772 0.12222953130 3 3 0.00988774799 0.01044588627 0.00780858107 0.00803403289 3 5 0.09934612377 4.87489726800 0.00755833044 0.00798497901 3 7 0.09691959719 0.18381617200 0.00755833044 0.00798497901 3 9 0.11695957224 0.22182367109 0.00755833044 0.00798497901 4 1 1.32444698390 9.38525303500 0.12204034772 0.12222953130 4 3 3.26029124940 81.07216489900 0.00133891340 0.00151731576 4 5 6.86726471330 7.55227553800 0.00091149442 0.00145574232 4 7 0.05012243250 0.07002075592 0.00091149442 0.00145574232 4 9 0.04805377687 0.06713085566 0.00091149442 0.00145574232 5 1 1.42024470270 10.06409170600 0.12234472624 0.12234623195 5 3 0.73162692453 1.08838390500 0.00050780987 0.00053288513 5 5 0.00018796377 0.00028940932 0.00008858800 0.00009698901 5 7 0.00661182760 0.00923668592 0.00008835252 0.00009810103 5 9 0.03168653343 0.05060637425 0.00008835252 0.00009810103 6 1 1.48315247610 10.50986671900 0.12230731157 0.12230881682 6 3 0.79645586809 4.95501497270 0.00050780987 0.00053288513 6 5 0.02572462874 0.03399120497 0.00000944829 0.00001070722 6 7 0.00021033504 0.00032385454 0.00000837868 0.000012464306 9 0.00052356989 0.00062622846 0.00000837868 0.00001246430 7 1 1.52752416390 10.82429192600 0.12230227980 0.12230378499 7 3 0.65840690474 0.86998511345 0.00050822742 0.00053691557 7 5 0.03156196658 0.04170436379 0.00000155971 0.00000157662 7 7 0.00004511377 0.00040621067 0.00000060540 0.00000067220 7 9 0.00292681692 0.00529485468 0.00000060540 0.00000067220 9 1 1.58585836080 11.23765781000 0.12230265534 0.12230416053 9 3 4.94561763980 5.03315746260 0.00050780987 0.00053288513 9 5 0.06437664897 0.08506400200 0.00000148255 0.00000160224 9 7 0.00328533681 0.00458959702 0.00000000353 0.00000002064 9 9 0.00000171140 0.00000193944 0.00000000319 0.00000000366 10 1 1.60603198840 11.38061151200 0.12230265355 0.12230415874 10 3 0.89241842654 1.17919593560 0.00050780987 0.00053288513 10 5 0.08479957806 0.11204981297 0.00000148044 0.00000158703 10 7 0.00338075181 0.00803691458 0.00000000255 0.00000000264 10 9 0.00002372024 0.00003134271 0.00000000024 0.00000000027 13 9 0.00003798578 0.00005674560 0.00000000002 0.00000000002 13 13 0.00000640537 0.00001277810 0.00000000003 0.00000000003 13 17 0.00018036381 0.00023832349 0.00000000007 0.00000000007 16 11 0.00028594331 0.00037783083 0.00000000005 0.00000000006 16 16 0.00029530260 0.00052939964 0.00000000009 0.00000000009 16 21 0.00290316380 0.00383609174 0.00000000132 0.00000000143 19 13 0.00038860089 0.00051347728 0.00000000025 0.00000000025 19 19 0.00002867129 0.00094075731 0.00000000171 0.00000000268 19 25 0.03581473458 0.04732375329 0.00000004473 0.00000005093 22 15 0.00732013137 0.00967244613 0.00000000288 0.00000000313 22 22 4.80535903370 7.75854968940 0.00000003620 0.00000005518 22 29 0.01989863092 0.11124748620 0.00000080876 0.00000136861 25 17 0.01061870798 0.01403101608 0.00000001384 0.00000002117 25 25 0.06901559824 0.11402913070 0.00000119249 0.00000654370 25 33 14.23917996800 89.10480794300 0.00014588013 0.00016457598 Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 5 0.00576600308 2.32617166770 0.00156865157 0.26682153160 1 7 0.00636885360 2.56937892540 0.00156865157 0.26682153160 1 9 0.00671866152 2.71050151050 0.00156865157 0.26682153160 2 1 0.00309271192 1.24768903710 0.00156865157 0.26682153160 2 3 0.00017148748 0.06918298632 0.00016312735 0.02018536257 2 5 0.00039256060 0.15837025027 0.00016312735 0.02018536257 2 7 0.00051326971 0.20706778097 0.00016312735 0.02018536257 2 9 0.00058761058 0.23705902585 0.00016312735 0.02018536257 3 1 0.00448290426 1.80853265530 0.00156865157 0.26682153160 3 3 0.00000690832 0.00074586452 0.00001911202 0.00223198812 3 5 0.00004730426 0.01908390110 0.00001566406 0.00169118917 3 7 0.00009098762 0.03670702651 0.00001566406 0.00169118917 3 9 0.00012355652 0.04984625644 0.00001566406 0.00169118917 4 1 0.00526536492 2.12419981530 0.00156865157 0.26682153160 4 3 0.00002203951 0.00889137372 0.00001566406 0.00169118916 4 5 0.00000172207 0.00069473364 0.00000133053 0.00013726900 4 7 0.00000753067 0.00303808778 0.00000133053 0.00013726900 4 9 0.00001212819 0.00489286127 0.00000133053 0.00013726900 5 1 0.00576600308 2.32617166780 0.00156865157 0.26682153160 5 3 0.00004730426 0.01908390110 0.00001566406 0.00169118916 5 5 0.00000012529 0.00005054380 0.00000013040 0.00001400136 5 7 0.00000978827 0.00394886997 0.00000009968 0.00000982719 5 9 0.00001266176 0.00510812034 0.00000009968 0.00000982719 6 1 0.00611356365 2.46638760690 0.00156865157 0.26682153160 6 3 0.00007062745 0.02849314817 0.00001566406 0.00169118916 6 5 0.00000386073 0.00155752782 0.00000009968 0.00000982719 6 7 0.00000063866 0.00025765378 0.00000000664 0.00000065489 6 9 0.00000097115 0.00039179093 0.00000000664 0.00000065489 7 1 0.00636885360 2.56937892550 0.00156865157 0.26682153160 7 3 0.00009098762 0.03670702610 0.00001566406 0.00169118916 7 5 0.00000978889 0.00394912181 0.00000009968 0.00000982719 7 7 0.00000000286 0.00000115153 0.00000000057 0.00000005648 7 9 0.00000000828 0.00000333935 0.00000000038 0.00000003545 9 1 0.00671866152 2.71050151040 0.00156865157 0.26682153160 9 3 0.00012355652 0.04984625744 0.00001566406 0.00169118916 9 5 0.00001266169 0.00510809076 0.00000009968 0.00000982719 9 7 0.00000000863 0.00000348237 0.00000000038 0.00000003545 9 9 0.00000000992 0.00000400295 0.00000000000 0.00000000061 10 1 0.00684370172 2.76094632620 0.00156865157 0.26682153160 10 3 0.00013655523 0.05509031196 0.00001566406 0.00169118916 10 5 0.00003012380 0.01215280992 0.00000009968 0.00000982719 10 7 0.00000003805 0.00001534919 0.00000000038 0.00000003545 10 9 0.00000001613 0.00000634691 0.00000000000 0.00000000062 13 9 0.00000086101 0.00034735432 0.00000000000 0.00000000003 13 13 0.00000000200 0.00000080798 0.00000000000 0.00000000009 13 17 0.00000264612 0.00106752250 0.00000000000 0.0000000000816 11 0.00000024692 0.00009961347 0.00000000000 0.00000000006 16 16 0.00000001298 0.00000523722 0.00000000000 0.00000000061 16 21 0.00032571465 0.13140266744 0.00000000003 0.00000000320 19 13 0.00000406218 0.00163879921 0.00000000000 0.00000000070 19 19 0.00017684554 0.07134458307 0.00000000010 0.00000003900 19 25 0.00000056088 0.00022627575 0.00000000129 0.00000048009 22 15 0.00000883391 0.00356385380 0.00000000009 0.00000003471 22 22 0.00000644250 0.00234695967 0.00000000199 0.00000020550 22 29 0.00000838404 0.00338236331 0.00000007989 0.00003214657 25 17 0.00001051413 0.00331636945 0.00000000087 0.00000033260 25 25 0.00020581979 0.08303362782 0.00000002863 0.00001087848 25 33 0.00142483959 0.57482131814 0.00000486983 0.00184920698 Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 5 0.15127931752 0.05503985080 0.15127931752 0.05503985080 1 7 0.15127931752 0.05503985080 0.15127931752 0.05503985080 1 9 0.15127931752 0.05503985080 0.15127931752 0.05503985080 2 1 0.29725152347 0.08538667712 0.02970363038 0.01194040104 2 3 0.00665441996 0.00251367452 0.01840363667 0.00789211020 2 5 0.00756914182 0.00285920622 0.01840363667 0.00789211020 2 7 0.00807648469 0.00305085250 0.01840363667 0.00789211020 2 9 0.00839176913 0.00316994965 0.01840363667 0.00789211020 3 1 0.43500866889 0.12495796260 0.01697516902 0.00753292122 3 3 0.00058834586 0.00026058425 0.00314872814 0.00142359789 3 5 0.00058241180 0.00026057913 0.00314872814 0.00142359789 3 7 0.00058164629 0.00026023663 0.00314872814 0.00142359789 3 9 0.00058145381 0.00026150313 0.00314872814 0.00142359789 4 1 0.51510904196 0.14796711193 0.01586076515 0.00742995915 4 3 0.00143399027 0.00040044515 0.00066287000 0.00030347225 4 5 0.00004372351 0.00001802798 0.00063290581 0.00029454211 4 7 0.00004652383 0.00001918260 0.00063290581 0.00029454211 4 9 0.00004946158 0.00002039388 0.00063290581 0.00029454211 5 1 0.56761140813 0.16304862450 0.01586076515 0.00742995915 5 3 0.00335227815 0.00096295517 0.00018557424 0.00008705182 5 5 0.00000449838 0.00000213400 0.00014191365 0.00006811097 5 7 0.00000449353 0.00000213170 0.00014191365 0.00006811097 5 9 0.00000449289 0.00000214372 0.00014191365 0.00006811097 6 1 0.60471972336 0.17370813499 0.01586076515 0.00742995915 6 3 0.00533205842 0.00153165489 0.00007949592 0.00003848941 6 5 0.00000753798 0.00000212800 0.00003344178 0.00001595630 6 7 0.00000033194 0.00000015747 0.00003332979 0.00001599652 6 9 0.00000033898 0.00000013977 0.00003332979 0.00001599652 7 1 0.63235237066 0.18164572234 0.01586076515 0.00742995915 7 3 0.00720975439 0.00207103049 0.00005815832 0.00002815842 7 5 0.00002405548 0.00000652108 0.00000834177 0.00000408709 7 7 0.00000004665 0.00000001335 0.00000802685 0.00000398157 7 9 0.00000006681 0.00000002027 0.00000802685 0.00000398157 9 1 0.67077218200 0.19268196527 0.01586076515 0.00742995915 9 3 0.01049174033 0.00301379395 0.00005484378 0.00002746922 9 5 0.00007778421 0.00002108614 0.00000095260 0.00000046673 9 7 0.00000025010 0.00000006822 0.00000059481 0.00000029321 9 9 0.00000003500 0.00000001083 0.00000059274 0.00000029402 10 1 0.68467046583 0.19667430233 0.01586076515 0.00742995915 10 3 0.01189608725 0.00341719817 0.00005484378 0.00002746922 10 5 0.00011106184 0.00003010720 0.00000052279 0.00000025614 10 7 0.00000051377 0.00000014158 0.00000016433 0.00000008101 10 9 0.00000005778 0.00000001584 0.00000016133 0.00000008002 13 9 0.00000965096 0.00000276242 0.00000000021 0.00000000009 13 13 0.00000005734 0.00000001721 0.00000000024 0.00000000011 13 17 0.00000037016 0.00000010067 0.00000000029 0.00000000009 16 11 0.00000016703 0.00000005423 0.00000000023 0.00000000007 16 16 0.00000007523 0.00000002108 0.00000000136 0.00000000038 16 21 0.00000440246 0.00000122513 0.00000000548 0.00000000259 19 13 0.00008957157 0.00002643672 0.00000000162 0.00000000068 19 19 0.00000620132 0.00000184373 0.00000000973 0.00000000268 19 25 0.00000299315 0.00000087872 0.00000012913 0.00000003764 22 15 0.00000113009 0.00000030635 0.00000000714 0.00000000303 22 22 0.00000101333 0.00000027537 0.00000008404 0.00000004051 22 29 0.00001163622 0.00000335189 0.00000592603 0.00000163026 25 17 0.00008138864 0.00002317129 0.00000012219 0.00000005157 25 25 0.00004025955 0.00001164612 0.00001260234 0.00000530483 25 33 0.00012087045 0.00003539497 0.00070208582 0.00020386772 Дроби Многочлени Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 1 0.33321289914 0.33653560644 0.33321289915 0.33653560644 1 3 0.73677995151 1.04635973670 0.08595077159 0.03314296132 1 5 1.33074173890 1.88989205360 0.07813929752 0.02917129136 1 7 1.62218793880 2.30379795360 0.07813929752 0.02917129136 1 9 1.79019962860 2.54240470060 0.07813929752 0.029171291362 1 0.38093142953 0.34088982997 0.33321289915 0.33653560644 2 3 108.52828854000 53.79528438600 0.03508293819 0.01603710670 2 5 11.83751443500 7.39333862160 0.00603397369 0.00249673379 2 7 16.45134666900 8.06771331410 0.00400187107 0.00192186007 2 9 2.05270709570 2.91521240740 0.00400067177 0.00167984100 3 1 0.39983806877 0.33697516590 0.33321289915 0.33653560644 3 3 1.14373906680 0.51796639019 0.03557770402 0.01554997138 3 5 4.67590088140 7.12118962440 0.00381000491 0.00141566619 3 7 11.96976264600 16.28514014100 0.00033487286 0.00012611838 3 9 147.32611065000 233.71213864000 0.00031603341 0.00011626823 4 1 0.41031461388 0.34580457911 0.33321289915 0.33653560644 4 5 0.11547401539 0.24612708912 0.00362522058 0.00135704259 4 7 6.98163079780 8.70159328850 0.00032007830 0.00011789993 4 9 200.89868231000 293.47604804000 0.00003393168 0.00001248529 5 1 0.41657778719 0.35108305064 0.33321289915 0.33653560644 5 3 1.14373906680 0.51796639019 0.03562571500 0.01557095557 5 5 0.34582075015 0.67731374632 0.00362829375 0.00135819298 5 7 0.28787460088 0.61359031559 0.00032007830 0.00011789993 5 9 269.46848274000 272.15554826000 0.00002340247 0.00000860974 6 1 0.42073715224 0.35458847656 0.33321289915 0.33653560644 6 3 1.14373906680 0.51796639019 0.03562582010 0.01557100151 6 5 0.60178232858 0.37088347949 0.00362800563 0.00135808512 6 7 0.01416028441 0.02216220490 0.00032007830 0.00011789993 6 9 28.07739896100 54.37392461800 0.00002340247 0.00000860974 7 1 0.42369817759 0.35708396682 0.33321289915 0.33653560644 7 3 1.14373906680 0.51796639019 0.03562582720 0.01557100461 7 5 0.05427097853 0.07817272312 0.00362797915 0.00135807521 7 7 0.56527796409 0.35305480951 0.00032007830 0.00011789993 7 9 5.01541001920 9.82302579570 0.00002340247 0.00000860974 9 1 0.42763109602 0.36039854827 0.33321289915 0.33653560644 9 3 1.14373906680 0.51796639019 0.03562582735 0.01557100468 9 5 0.05584037058 0.06756330821 0.00362797928 0.00135807526 9 7 0.02959303991 0.01731231796 0.00032007830 0.00011789993 9 9 116.67208874000 215.64192761000 0.00002340247 0.00000860974 10 1 0.42900308940 0.36155483560 0.33321289915 0.33653560644 10 3 1.14373906680 0.51796639019 0.03562582737 0.01557100468 10 5 0.63474784430 0.44891954547 0.00362797927 0.00135807526 10 7 0.15990232197 0.20225726009 0.00032007830 0.00011789993 10 9 0.16799591213 0.35807488549 0.00002340247 0.00000860974 13 9 2.27019124730 3.22407892740 0.00000208216 0.00000077835 13 13 0.00128811535 0.00243770956 0.00000000485 0.00000000187 13 17 0.29511946594 0.62903238318 0.00000000020 0.00000000008 16 11 0.02165218885 0.03370435287 0.00000007629 0.00000003166 16 16 0.00024923150 0.00048375231 0.00000000051 0.00000000021 16 21 0.03300286513 0.05765061767 0.00000000385 0.00000000513 19 13 0.36381363022 0.77545055905 0.00000000487 0.00000000188 19 19 0.00091145851 0.00161422039 0.00000000459 0.00000000169 19 25 1.20763490720 1.99359765480 0.00000018628 0.00000025101 22 15 0.08304117546 0.17699811272 0.00000000863 0.00000000319 22 22 189.14463951000 286.92867409000 0.00000010621 0.00000020835 22 29 61.62582018300 108.07586410000 0.00001172893 0.00000482399 25 17 0.07959936775 0.16966207173 0.00000005083 0.00000006537 25 25 0.65484417000 1.08103516540 0.00000642809 0.00000266219 25 33 5.44702057510 10.14281633600 0.00060708267 0.00082893024 Порівняння точності інтерполяції двовимірними многочленами при виборі рівномірно розташованих вузлів і вузлів, що є коренями многочлена Чебишева. Рівномірний вибір вузлів Корені многочлена Чебишева Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 1 0.00156998281 0.27357026415 0.00156998281 0.27357026414 1 3 0.00156978338 0.27522922659 0.00156978338 0.27522922658 1 5 0.00156978338 0.27522922659 0.00156978338 0.27522922658 1 7 0.00156978338 0.27522922659 0.00156978338 0.27522922658 1 9 0.00156978338 0.27522922659 0.00156978338 0.27522922658 2 1 0.00156978338 0.27522922659 0.00156978338 0.27522922658 2 3 0.00016279695 0.01934678422 0.00016279695 0.01934678422 2 5 0.00016279695 0.01934678422 0.00016279695 0.01934678422 2 7 0.00016279695 0.01934678422 0.00016279695 0.01934678422 2 9 0.00016279695 0.01934678422 0.00016279695 0.01934678422 3 1 0.00156978338 0.27522922659 0.00156978338 0.27522922658 3 3 0.00001909961 0.00212953657 0.00001768114 0.00327712069 3 5 0.00001554767 0.00165338068 0.00001768113 0.00327712068 3 7 0.00001554767 0.00165338068 0.00001768114 0.00327712068 3 9 0.00001554767 0.00165338068 0.00001768114 0.00327712068 5 1 0.00156978338 0.27522922659 0.00156978338 0.27522922658 5 3 0.00001554767 0.00165338068 0.00001768114 0.00327712069 5 5 0.00000013083 0.00001313434 0.00000008136 0.00001508023 5 7 0.00000009942 0.00001000142 0.00000008136 0.000015080225 9 0.00000009942 0.00001000142 0.00000008136 0.00001508023 7 1 0.00156978338 0.27522922659 0.00156978338 0.27522922658 7 3 0.00001554767 0.00165338068 0.00001768114 0.00327712069 7 5 0.00000009942 0.00001000142 0.00000008136 0.00001508023 7 7 0.00000000057 0.00000005732 0.00000000020 0.00000003708 7 9 0.00000000040 0.00000003789 0.00000000020 0.00000003707 9 1 0.00156978338 0.27522922659 0.00156978338 0.27522922658 9 3 0.00001554767 0.00165338068 0.00001768114 0.00327712069 9 5 0.00000009942 0.00001000142 0.00000008136 0.00001508023 9 7 0.00000000040 0.00000003789 0.00000000020 0.00000003708 9 9 0.00000000000 0.00000000051 0.00000000000 0.00000000005 10 1 0.00156978338 0.27522922659 0.00156978338 0.27522922658 10 3 0.00001554767 0.00165338068 0.00001768114 0.00327712069 10 5 0.00000009942 0.00001000142 0.00000008136 0.00001508023 10 7 0.00000000040 0.00000003789 0.00000000020 0.00000003707 10 9 0.00000000000 0.00000000060 0.00000000000 0.00000000005 13 9 0.00000000000 0.00000000003 0.00000000000 0.00000000006 13 13 0.00000000000 0.00000000009 0.00000000000 0.00000000001 13 17 0.00000000000 0.00000000008 0.00000000000 0.00000000001 16 11 0.00000000000 0.00000000006 0.00000000000 0.00000000001 16 16 0.00000000000 0.00000000061 0.00000000000 0.00000000001 16 21 0.00000000003 0.00000000320 0.00000000000 0.00000000002 19 13 0.00000000000 0.00000000070 0.00000000000 0.00000000002 19 19 0.00000000010 0.00000003900 0.00000000000 0.00000000003 19 25 0.00000000129 0.00000048009 0.00000000000 0.00000000001 22 15 0.00000000009 0.00000003471 0.00000000000 0.00000000001 22 22 0.00000000199 0.00000020550 0.00000000000 0.00000000003 22 29 0.00000007989 0.00003214657 0.00000000000 0.00000000002 25 17 0.00000000087 0.00000033260 0.00000000000 0.00000000002 25 25 0.00000002863 0.00001087848 0.00000000000 0.00000000002 25 33 0.00000486983 0.00184920698 0.00000000000 0.00000000002 Рівномірний вибір вузлів Корені многочлена Чебишева Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 5 0.15123015368 0.05440894226 0.15123015368 0.05440894226 1 7 0.15123015368 0.05440894226 0.15123015368 0.05440894226 1 9 0.15123015368 0.05440894226 0.15123015368 0.05440894226 2 1 0.02966667728 0.01191170125 0.02966667728 0.01191170126 2 3 0.01842127828 0.00787787140 0.01842127828 0.00787787141 2 5 0.01842127828 0.00787787140 0.01842127828 0.00787787140 2 7 0.01842127828 0.00787787140 0.01842127828 0.00787787140 2 9 0.01842127828 0.00787787140 0.01842127828 0.00787787141 3 1 0.01696558602 0.00740802693 0.01649820168 0.00745327222 3 3 0.00314410517 0.00143498785 0.00304950862 0.00107565408 3 5 0.00314410517 0.00143498785 0.00304950862 0.00107565408 3 7 0.00314410517 0.00143498785 0.00304950862 0.00107565408 3 9 0.00314410517 0.00143498785 0.00304950861 0.00107565408 4 1 0.01586623348 0.00743668541 0.01586623348 0.00743668540 4 3 0.00066288592 0.00030737102 0.00054380825 0.00021410211 4 5 0.00063083714 0.00029857469 0.00054380825 0.00021410212 4 7 0.00063083714 0.00029857469 0.00054380826 0.00021410212 4 9 0.00063083714 0.00029857469 0.00054380825 0.00021410211 5 1 0.01586623348 0.00743668541 0.01586623348 0.00743668541 5 3 0.00018175143 0.00008427562 0.00012388447 0.00004824548 5 5 0.00013993197 0.00006622969 0.00009421583 0.00003912706 5 7 0.00013993197 0.00006622969 0.00009421583 0.00003912706 5 9 0.00013993197 0.00006622969 0.00009421582 0.00003912706 6 1 0.01586623348 0.00743668541 0.01586623348 0.00743668541 6 3 0.00008060934 0.00003882261 0.00006212528 0.00002911883 6 5 0.00003227421 0.00001577046 0.00001843924 0.00000692307 6 7 0.00003212583 0.00001581595 0.00001843923 0.00000692307 6 9 0.00003212583 0.00001581595 0.00001843924 0.00000692307 7 1 0.01586623348 0.00743668541 0.01586623348 0.00743668541 7 3 0.00005723576 0.00002756556 0.00006212528 0.00002911883 7 5 0.00000872576 0.00000423265 0.00000354497 0.00000138881 7 7 0.00000843502 0.00000415267 0.00000351722 0.00000138476 7 9 0.00000843502 0.00000415267 0.00000351722 0.00000138476 9 1 0.01586623348 0.00743668541 0.01586623348 0.00743668541 9 3 0.00005443540 0.00002732111 0.00006212528 0.00002911883 9 5 0.00000093065 0.00000045144 0.00000032388 0.00000015181 9 7 0.00000058485 0.00000028578 0.00000014183 0.00000005450 9 9 0.00000058292 0.00000028698 0.00000014183 0.00000005449 10 1 0.01586623348 0.00743668541 0.01586623348 0.00743668541 10 3 0.00005443540 0.00002732111 0.00006212528 0.00002911883 10 5 0.00000050253 0.00000024376 0.00000032388 0.00000015181 10 7 0.00000015583 0.00000007615 0.00000002771 0.00000001103 10 9 0.00000015290 0.00000007527 0.00000002747 0.00000001110 13 9 0.00000000021 0.00000000009 0.00000000025 0.00000000009 13 13 0.00000000024 0.00000000011 0.00000000025 0.0000000000913 17 0.00000000029 0.00000000009 0.00000000026 0.00000000008 16 11 0.00000000023 0.00000000007 0.00000000004 0.00000000001 16 16 0.00000000136 0.00000000038 0.00000000005 0.00000000001 16 21 0.00000000548 0.00000000259 0.00000000008 0.00000000002 19 13 0.00000000162 0.00000000068 0.00000000005 0.00000000002 19 19 0.00000000973 0.00000000268 0.00000000007 0.00000000002 19 25 0.00000012913 0.00000003764 0.00000000009 0.00000000003 22 15 0.00000000714 0.00000000303 0.00000000006 0.00000000002 22 22 0.00000008404 0.00000004051 0.00000000008 0.00000000002 22 29 0.00000592603 0.00000163026 0.00000000013 0.00000000004 25 17 0.00000012219 0.00000005157 0.00000000007 0.00000000002 25 25 0.00001260234 0.00000530483 0.00000000009 0.00000000003 25 33 0.00070208582 0.00020386772 0.00000000011 0.00000000003 Рівномірний вибір вузлів Корені многочлена Чебишова Nx Ny Абсолютна похибка Відносна похибка Абсолютна похибка Відносна похибка 1 1 0.33306865402 0.32307090345 0.33306865402 0.32307090345 1 3 0.08586595819 0.03341176368 0.08186008447 0.03102013697 1 5 0.07813510887 0.02916138270 0.07813510887 0.02916138270 1 7 0.07813510887 0.02916138270 0.07813510887 0.02916138270 1 9 0.07813510887 0.02916138270 0.07813510887 0.02916138270 2 1 0.33306865402 0.32307090345 0.33306865402 0.32307090345 2 3 0.03469686471 0.01566500544 0.04625034373 0.03296984444 2 5 0.00605273671 0.00247749013 0.00653615260 0.00269813699 2 7 0.00399096540 0.00184376495 0.00407962846 0.00174740469 2 9 0.00398626344 0.00164553760 0.00398495354 0.00164499687 3 1 0.33306865402 0.32307090345 0.33306865402 0.32307090345 3 3 0.03522653667 0.01572872174 0.04506746190 0.03050704547 3 5 0.00381852992 0.00142514184 0.00319438312 0.00170517385 3 7 0.00033984034 0.00012822589 0.00038038885 0.00014196774 3 9 0.00031296004 0.00011514494 0.00038038886 0.00014196774 4 1 0.33306865402 0.32307090345 0.33306865402 0.32307090345 4 3 0.03524551644 0.01573719625 0.04491754863 0.03040556625 | |
Переглядів: 542 | |
Всього коментарів: 0 | |