Головна » Статті » Хімія | [ Додати статтю ] |
Ароматичне заміщення по механізму SRN1
Міністерство освіти і науки України Прикарпатський національний університет ім. В. Стефаника Реферат на тему: "Ароматичне заміщення по механізму SRN1” Виконала: Студентка групи Х-31 Петраш Тетяна Викладач: Лучкевич Євген Романович м. Івано-Франківськ 2005р. АРОМАТИЧНЕ НУКЛЕОФІЛЬНЕ ЗАМІЩЕННЯ Механізми За минулі три десятиліття і після етапного огляду Бан-нета і Залера [1] хіміки-органіки визнали, що ароматичні з'єднання можуть легко вступати не тільки в реакції електрофільного заміщення, але і в реакції нуклеофільного заміщення. Механізми цих реакцій дуже різноманітні і визначаються природою ароматичної частини молекули, нуклеофіла і умовами проведення реакцій. У загальному випадку механізми ароматичного нуклеофільного заміщення можуть бути представлені схемою 1.1. Інтермедіати 1—4 після однієї або декількох проміжних стадій дають продукти заміщення [див. реакцію (5)] [2, 3]. Механізми ароматичного нуклеофільного заміщення можуть бути представлені схемою 1.1. Интермедиати1—4 після однієї або декількох проміжних стадій дають продукти заміщення [див. реакцію (5)] [2, 3]. Ароматичні субстрати, в яких азот виступає як група, що йде, такі, як діазонієві солі, є єдиними з'єднаннями, здатними утворювати арил-катіони 1. Дійсно, встановлено, що тільки 5 реагує по цьому механізму [реакція (6) 1 [4, 5]. У сильноосновних розчинах утворюються арил-карбаніони 2, які передують інтермедіатам аринового типу. Проте дегидробензоли можуть утворюватися і деякими іншими шляхами, не через карбаніонні інтермедіати. Реакції з участю проміжних з'єднань аринового типу мають той недолік, що в результаті виходить більше одного продукту [реакції (7 і 8)]. Проте перевага даних процесів полягає в достатній спільності по відношенню до заступника в ароматичному ядрі: такий механізм нуклеофільного заміщення спостерігався для субстратів, що мають як електроноакцепторні, так і електронодонорні замісники [6—8]. Для субстратів, що містять електроноакцепторні групи, найпоширеніший механізм включає освіту -комплексу типу 3. Більшість досліджень виконано на субстратах, що містять принаймні одну активуючу групу; для неактивованих субстратів механізм може виявитися іншим. При вивченні реакції неактивованих арилгалогенів з амід-іоном в рідкому аміаку Баннет і Ким [12] одержали деякі незвичайні результати, які не могли бути пояснені запропонованим механізмом з участю дегідробензолу. Вони досліджували реакцію взаємодії 5- і 6-амино-1,2,4-три-метилбензола з 5- і 6-галоген-1,2,4-триметилбензолов (7 і 8, схема 1.2). При цьому передбачалося, що у разі ізомерів 7 і 8 відношення продуктів 10 і 11 буде однаковим і не залежатиме від вживаного галогену (X). Ці припущення виправдалися, коли група X, що йде, була хлором або бромом, причому співвідношення виходів продуктів 10:11 дорівнювало 1,46. Проте, коли групою, що йде, був йод, суміш амінотриметилбензолів, що виходить, завжди збагачена продуктом, в якому аміногрупа займала те ж положення, що і йод, що йде, тобто з ізомеру 7 було одержано більшу кількість продукту 10, а з 8 — більше продукту 11. Одним з найважливіших спостережень було те, що реакції каталізували сольватованими електронами, що утворюються при розчиненні лужних металів в рідкому аміаку. На підставі цього факту був запропонований механізм, для якого передбачалася участь радикалів і аніон-радикалів (схема 1.3) [13]. Постуліровалось, що на початковій стадії [реакція (9)] арилгалогенід захоплює електрон, що утворюється аніон-радикал дисоціює на арил-радикал і йодид-іон [реакція (10)]. Потім арил-радикал реагує з амід-іонами з утворенням нового аніон-радикала [реакція (11)], який шляхом перенесення електрона на субстрат—арилітодид — дає продукт заміщення і аніон-радикал субстрата [реакція (12)]. Реакції (10) — (12) є стадією розвитку ланцюга даного механізму. Підсумовуючи реакції (10) — (12), одержимо загальне рівняння процесу нуклеофільного ароматичного заміщення [реакція (13)]. Проте не слід забувати про те, що в ньому все ж таки як інтермедіати беруть участь радикали і аніон-радикали. Цей механізм одержав назву заміщення радикальне нуклеофільне мономолекулярне (Substitution Radical Nucleo-philic, Unimolecular, або SRN1) по аналогії з механізмом SN! Механізм радикального нуклеофільного заміщення, який є включаючий стадії, аналогічні реакціям (9) — (12), був незалежно запропонований Корнблюмом і Расселом. Наприклад, було відомо, що n-нитробензилхлорид реагує (Гнат-рієвой злитиму 2-нітропропана, даючи С-алкілованний продукт з виходом 92% і лише 6% О-алкілованого продукту (виділеного у вигляді n-нитробензальдегіду) [реакція (14)], хоча звична реакція цього нуклеофілу з алкілгалогенідами приводить до алкілування по кисню [реакція (15)] [16]. Вихід продукту С-алкілування залежить не тільки від наявності нітрогрупи, але також і від природи групи, що йде. Крім того, сильні акцептори електронів інгібують реакцію С-алкілування, а О-алкілування при цьому помітно зростає. Так, у присутності n-динитробензола вихід продукту С-алкилірованія зменшується до 6%, а вихід продукту О-алкілування збільшується до 88%, Це дозволяє припустити, що О-алкілування натрієвих солей нітроалканів насправді протікає як безпосереднє нуклеофільне заміщення хлориду з алкілуючого агента киснем аніону нітроалкана. Альтернативний механізм, що приводить до продуктів С-алкілування в серії реакцій з n-нітробензильними похідними, конкурує з механізмом прямого заміщення. Запропонований конкурентний механізм включає участь радикалів і аніон-радикалів як інтермедіатів [реакції (16—19)]. Одночасно Рассел і Дейнен, грунтуючись на іншому підході, запропонували той же механізм. Вони показали, що реакція поєднання 2-нітро-2-пропанід-аніону з n-нітробензил-хлоридом або 2-нітро-2-хлорпропаном каталізується опромінюванням, а аніон-радикал продукту поєднання — 2- (ганітробензил) -2-нітропропану (12) — був знайдений в розчинах етанолу і диметілформаміду за допомогою спектроскопії електронного парамагнітного резонансу (ЕПР). Стадії механізму SRN1 Основними стадіями механізму SRN1 є ініціація, ріст ланцюга і обрив ланцюга (схема 1.4), Перший реакційно здатний інтермедіат цього механізму — аніон-радикал — утворюється, коли ароматичний субстрат з відповідною нуклеофугною групою приймає електрон [реакція (20)]. Це відбувається або шляхом взаємодії з сольватуючим електроном, що з'являється в результаті розчинення лужного металу в рідкому аміаку, або електрон приймається від катода, або за допомогою перенесення електрона від іншого аніон-радикалу, або в результаті якої-небудь іншої хімічної реакції. У циклі розвитку ланцюга по реакції (21) аніон-радикал дисоціює з утворенням арил-радикалу і аніона нуклеофугної групи. Якщо субстрат АrХ є катіоном, нуклеофугна група йде у вигляді нейтральної частинки. По реакції (22) арил-радикал реагує з нуклеофілом з освітою новою -зв’язку і нового аніон-радикала. Реакція (23) є перенесенням електрона з аніон-радикала на субстрат і завершують послідовність реакцій стадії розвитку ланцюга. Стадія обриву ланцюга залежить від умов реакції. Нуклеофіли, одержані із з'єднань елементів групи IVA Карбаніонні нуклеофіли Зв'язані вуглеводні. Всі реакції аніонів СН-кислот з арилпохідними проводилися в рідкому аміаку. Оскільки рКа аміаку рівний приблизно 32,5 [1], будь-який вуглеводень, з нижчим значенням рКа перетворюється в спів пряжену основу по реакції з амид-іоном в рідкому аміаку. Величина рКа алільного водню в простому ненасиченому вуглеводні — пропені — оцінюється в 35,5. Системи з більшою мірою сполучення повинні мати нижчі значення рКа [2]. Карбаніон 2, одержуваний з пентадієну-1,3 (1) і амід-іону [реакція (1)], не реагував з бромбензолом при —78°С. Проте при додаванні металевого калію в кількості, достатній для підтримки надлишку електронів, реакція протікала з утворенням складної суміші продуктів ([реакція-(2)], яка включала 5-фенілпентен-1 (20%), 1-фенілпентен-2 (6%), 5-фенілпентадієн-1,3 (18%) і 1-фенілпентадієн-1,3 (13%). Знайдені також і дифенільовані продукти [2]. Цікаво відзначити, що одержані продукти утворюються в результаті фенілювання тільки положення 1 карбаніону 2. Так, каталітичне гідрування суміші продуктів дало 1-фенілпентан з виходом 74% [2]. На підставі цих результатів можна припустити, що феніл-радикал реагує з 2 з утворенням аніон-радикалу 3 [реакція (3)], який може або взаємодіяти ще з одним електроном, відновлюючись до фенілпентенів [реакція (4)], або віддати неспарений електрон бромбензолу, що приводить до освіти 5-фенілпентадієну-1,3 [реакція (5)]. Ймовірно, продукти відновлення, одержувані по реакції (4), утворюються не в результаті відновлення 4, оскільки в сильноосновному середовищі це з'єднання швидко перетворюється на 1-іон [реакція (6)]. Підкислення приводить до протонуавння 5 в положеннях 1 і 5, що дає два ізомерних фенілпентадієна. Іншим карбаніоном, що піддавалося фенілюванню бромбензолом в розчинах металевого калію в аміаку, був (п-анізил) пропенід (6). Фенілювання проходило в положеннях 1 і 3 субстрату 6 приблизно однаковою мірою. Після каталітичного гідрування були одержані похідні пропану 7 і 8 [реакція (7)]. Одержаний з індена карбаніон 9 з хорошим виходом дав 3-фенілінден [10, реакція (8)]. Низький вихід 1-феніл-індана (продукту відновлення аніон-радикалу) вказує, що перенесення електрона на бромбензол [аналогічно реакції (5)] відбувається в значній мірі. Енолят-аніони кетону. Ініціація лужними металами. Еноляти кетонів— найбільш вивчені нуклеофіли в реакціях арилювання по механізму SRN1. Перше повідомлення про те, що арилювання енолят-аніона ацетону (11) може бути здійснено по механізму SRN1, відносилося до реакції галогенбензолів в рідкому аміаку, ініційованої сольватуючими електронами [7]. Фенілацетон (12) і 1-фенілпропанол-2 (13) були основними продуктами [реакція (9)]: Виходи 12 і 13 сильно залежали від природи XI Коли феніл-радикал взаємодіє з енолятом ацетону, виходить аніон-радикал кетильного типу 14 [реакція (10)], який на стадії розвитку ланцюга [реакція (11)] може віддати свій зайвий електрон субстрату PhX або на стадії обриву ланцюга прореагувати ще з одним електроном, даючи алкоголят [реакція (12)]. У реакції м-йоданізолу (15а) з 11 співвідношення кетону 16 і спирту 17 складало 6,9 [реакція 13)], що близьке до співвідношення 12 : 13, рівному 6,6, у реакції, в якій субстратом був йодбензол. У разі м-хлоранізолу (156) відношення 16 : 17 дорівнювало 0,51, що близько до значення 0,55 для продуктів 12:13, коли субстратом був хлорбензол [8]. Але коли з 11 реагувала суміш йодбензолу і м-хлоранізолу (156), для відношення 12 : 13 (з йодбензолу) була одержана величина 23, а для відношення 16 : 17 (з 156) — 0,64, тобто неначебто субстрати реагували незалежно один від одного. Більш того, коли суміш хлорбензолу і м-йоданізолу (15а) реагувала з сольватуючиими електронами у присутності 11, відношення 12 : 13 (з хлорбензолу) було 0,47, а відношення 16 : 17 (з 15а) складало 28. У реакції 1-хлорнафталіну з енолятом ацетону при ініціації металевим калієм в рідкому аміаку був одержаний кетон 18, 19 і 20 [9]. Не було знайдено навіть слідів спирту 21. Така поведінка суперечить результатам, одержаним в реакції 11 з галогенбензолами, де були знайдені і кетон 12, і спирт 13. Цей результат був приписаний різній природі проміжного аніон-радикала, що утворюється при поєднанні арил-радикала з 11. Коли арильною групою є феніл, утворюється аніон-радикал кетильного типу 14, але коли арильна група—1-нафтил, інтермедіатом виступає аніон-радикал 22, в якому неспарений електрон відноситься до -зв’язку ароматичного кільця. Реакція 22 з ще одним сольватуючим електроном приводить до відновлення нафталінового кільця і утворення продуктів 19 і 20. Проте при взаємодії 1-хлорнафталіну з аніоном, одержаним з ацетофенону реакцією з металевим калієм, відновлення нафталінового кільця не спостерігалося, що припускає утворення аніон-радикального інтермедіату кетільного типу 23. Згідно теорії молекулярних орбіталей, структура проміжного аніон-радикала повинна залежати від енергії нижчої вільної молекулярної орбіталі, а послідовність бензол >RСОСН3>нафталин >RСОРЬ добре узгоджується з структурами 14, 22 і 23 [9, 10]. 3-Бромтіофен (24а) реагує з 11 при ініціації металевим натрієм або калієм, даючи 20—30% кетону 25а — продукт монотієлювання — і вторинний спирт 27а. З меншим виходом (2—10%) утворюються продукти дитієнілювання 26а і 28а [реакція (14)] [11]: Реакції 5-галоген-4-феніл- і 4-трет-бутил-5-галогенпіримі-динів (29) з енолят-іонами ацетону, ацетофенону і пінаколіну, ініційовані металевим калієм в рідкому аміаку, приводять до продуктів заміщення з хорошими виходами [реакція (15)] ;[13]. Фотоініційовані реакції. Реакції галогенбензолів з енолят-іонами ацетону відбуваються не тільки при ініціації сольватуючими електронами, але також і при опромінюванні світлом ближньої УФ-ОБЛАСТІ (290—350 нм). Звичної вольфрамової лампи достатньо для проведення реакції. Ініціація відбувається, ймовірно, шляхом перенесення електрона на субстрат — галогенбензол — з утворенням його аніон-радикалу ([реакції (16) — (17)] ;[14]. По цій методиці одержують високі виходи фенілацетону, вільного від домішок спирту і інших відновлених продуктів, які утворюються при ініціації металевим калієм. Звичайно одним з побічних продуктів є -диарилкетон, який виходить при подвійному арилюванні. При ініціації реакції металевим калієм іншим побічним продуктом є бензол, який, утворюється' в результаті відновлення проміжного фенільного радикалу при його взаємодії з сольваатуючим електроном з подальшим протонуванням виникаючого феніл-аніону [реакція (18)]: Якщо 11 одержують реакцією ацетону з металевим калієм в аміаку, як побічний продукт утворюється ізо-пропілат-іон. При реакції галогенбензолів з 11 виходить значна кількість бензолу. Проте фотоініційована реакція 11, синтезованого по кислотно-основній реакції з амід- або третбутилат-іонами (яка не приводить до изопропілат-іонів) , дає дуже малий вихід бензолу. Поява бензолу в цій реакції приписується відриву фенільним радикалом атома водню від ізопропилат-іону, внаслідок чого виходять бензол і кетіл 31 [реакція (19)]: Кетон, що має ф-водневі атоми, такі, як енолят 2,4-диметилпентанону-3 (32), мляво реагують зи продукт 34. Вважається, що освіта 34 відбувається по реакції (20), де фенільний радикал відриває р-во-огрядний атом з 32, даючи бензол і аніон-радикальний інтермедіат 33. Оскільки 33, мабуть, нездатний передати неспарений електрон іодбензолу, то реакція (20) стає стадією, що передує обриву ланцюга [17]. Стадія обриву полягає тоді в диспропорціонуванні 33 по реакції (21). Еноляти арилкетонів, такі, як енолят-іон ацетофенону (35), погано реагують з арилгалогенідами в умовах фотоініціації. Енолят-аніон 35 зовсім не взаємодіє з йодбензоломи [19] або з 2-бромпіридином [12], а з 1-хлорнафталіном вихід продукту заміщення складає 8% [9]. Проте при інтенсивнішому і тривалішому опромінюванні йодбензол реагує з 35, даючи заміщений продукт з виходом 67% [6]. Літієва сіль 35 взаємодіє з 2-хлорхіноліном, даючи до 82% продукту заміщення [21]; натрієва сіль опинилася в цій реакції значно менш активною [20]. Хороші виходи продуктів заміщення були одержані в реакціях з 5-галоген-4-феніл- і 4-трет-бутил-5-галогенпіримідинами [реакція (22)] [13]. Хоча моноаніони р-дікетонов не вступають в реакції SRN! з арил- і гетероарилгалогенідами, арилювання 1,3-діаніонів р-дикетонів можна провести по кінцевому атомі вуглецю, який несе негативний заряд [реакції (23) і (24)] [19, 22]: Енолят-аніони а-дикарбонільних з'єднань з однією карбонільною групою, захищеною у вигляді ацеталя, наприклад діметілацеталь 2-оксопропаналя, реагують при фотоініціації з 2-хлорхіноліном, даючи з виходом 80% продукт заміщення {реакція (25)]. Іодбензол в цих умовах не реагує [23]. Несиметричні діалкілкетони. Несиметричний диалкіл-кетон може утворювати декілька енолят-іонів, причому арилювання можна піддати кожний з них, хоча і необов'язково з однаковою швидкістю. Наприклад, бутанон (36) дає три енолят-іони: 37, 38а і 386 [реакція (26)] [24]: Взаємодія цих енолят-іонів з бром- або йодбензолом приводить до кетону 39 і 40 відносно 1,6 [відзначимо, що з енолятів 38а і 386 виходить один і той же продукт — 3-фенілбутанон-2 (40)] [2]. У фотоініційованій реакції о-йоданізолу з 36 утворюються обидва кетони — 39а і 40а [25]. Реакція енолят-іонів 3-метилбутанона-2 (41 і 42) з бром-бензолом дає головним чином продукт арилювання тауто-міра 42. Такий же результат спостерігався і з іншими ароматичному субстратами [реакція (27)] Фотоініційована реакція о-йоданізолу з енолят-іоном 3-метилбутанона-2 дає 66% кетону 45 (вихід виділеного продукту). Кетон 46 не був знайдений, що, можливо, пов'язано із стеричними перешкодами. Реакції з дизаміщеними субстратами. У фотоініційованій реакції 2,6-дибромпіридину (47а) або 2,6-дихлорпі-ридину (476) з енолят-іоном пінаколіну (48) в рідкому аміаку з високим виходом одержаний продукт дизаміщення 49 [реакція (28)] [12]. Утворення продукту 49 відбувається, очевидно, безпосередньо з початкових дигалогенпіридинів без проміжного накопичення монозаміщених сполук. Ці результати, а також поведінка інших дигалогенароматичних сполук в реакціях з різними нуклеофилами характерні для механізму SRN1. При поєднанні нуклеофілу з галогенарильним радикалом, таким, наприклад, як 50, утворюється новий аніон-радикал. Для того, щоб аніон-радикал 51 дав продукт дизамещення без проміжного утворення монозаміщеного з'єднання, швидкість відщеплювання галогенідіона повинна бути вищою швидкості перенесення електрона на початковий субстрат. Аніон-радикал, що утворюється, 52 потім вступає в реакцію поєднання з іншим енолят-іоном 48, даючи продукт 49 [реакції (29) —(31)]. Фотоініційована реакція о-дибромбензолу з надлишком енолят-іона пінаколіну в аміаку давала з виходом 62% продукт дизаміщенням 1,2-б«с-(3,3-диметил-2-оксобутил) бензолів,. а також 35%, що не прореагував о-дибромбензолу. У фотоініційованій реакції о-дибромбензолу з надлишком енолят-іона ацетону одержані ацетиліндени, шляхом альдольної конденсації утворюється о-диацетонілбензол. п-Дигалогенбензоли (53) реагували з енолят-іонами ке-тонів (54) в умовах фотоініціації у присутності надлишку третбутилату калія, що забезпечує можливість іонізації продуктів дизаміщення, що утворюються [реакції (33) і (34)]. Очікувалося, що аніон 56, що виходить, виступатиме в ролі нуклеофілу, здатного реагувати з арил-радикалами, даючи продукти олігомерізації і (або) полімеризації [28]. Проте у фотоініційованій реакції субстратів 53 з енолятом 54а у присутності надлишку третбутилатного підстави (співвідношення 1:1:4) кількість елімінованого галогенід-іону складала лише 25—60% від теоретичного (з розрахунку на два атоми галогену на кожну молекулу 53). А у фотоініційованій реакції 53а з великим надлишком початкового еноляту 54а або 546 елімінування хлорид-іону відбувається на 83 і 93% відповідно. Продукти дизаміщення утворюються з високими виходами; це указує на те, що реакція (33), мабуть, проходить до кінця (продукт 556 був виділений з виходом 65%) [28]. Кількість галогенид-іона, елімінованого в реакції при співвідношенні реагентів 1:1:4, показує, що в цих умовах реакція може не доходити до кінця. Причиною цього може бути нерозчинність заміщених продуктів, а також їх розкладання. На початку реакції розчину може бути утворення структур типу 57 які інертних по відношенню до арил-радикалів. Реакції циклізації. Цікавим типом реакцій арилювання енолят-іонами є внутрішньомолекулярні реакції SRN1. Першою вказівкою на існування реакцій цього типу був синтез цефалотаксинону (59) з відповідного йодкетону (58) під дією трет-бутилату калія в рідкому аміаку в умовах фотоініціації [реакція (35)]: [29]. Такий підхід дав продукт 59 з виходом 94%. В порівнянні з іншими методами синтезу цього з'єднанням, а саме з реакцією аринового типу (вихід 15%), з реакцією при каталізі N1(0) (вихід 30—35%) і з SRN1-реакцією при ініціації металевим калієм (вихід 45%) реакція (36) є якнайкращим методом [29]. Внутрішньомолекулярне арілірованіє енолятов йод-проїзводітельнимі ароматичних з'єднань, такими, як 62 продемонструвало можливість ефективної циклізації [реакція (37)] [18]. Якщо субстрат містить -атоми водню, то реакція відщеплювання атома водню з цього положення конкурує з циклізацією. | |
Переглядів: 505 | |
Всього коментарів: 0 | |